ar X iv : q - a lg / 9 50 70 22 v 1 2 0 Ju l 1 99 5 QUANTUM PRINCIPAL BUNDLES AS HOPF - GALOIS EXTENSIONS
نویسنده
چکیده
It is shown that every quantum principal bundle with a compact structure group is a Hopf-Galois extension. This property naturally extends to the level of general differential structures, so that every differential calculus over a quantum principal bundle with a compact structure group is a graded-differential variant of the Hopf-Galois extension.
منابع مشابه
ar X iv : q - a lg / 9 50 70 18 v 1 2 0 Ju l 1 99 5 QUANTUM PRINCIPAL BUNDLES & TANNAKA - KREIN DUALITY THEORY
The structure of quantum principal bundles is studied, from the viewpoint of Tannaka-Krein duality theory. It is shown that if the structure quantum group is compact, principal G-bundles over a quantum space M are in a natural correspondence with certain contravariant functors defined on the category of finite-dimensional unitary representations of G, with the values in the category of finite p...
متن کاملar X iv : q - a lg / 9 70 50 22 v 1 2 7 M ay 1 99 7 Coloured Hopf
Some new algebraic structures related to the coloured Yang-Baxter equation, and termed coloured Hopf algebras, are reviewed. Coloured quantum universal enveloping algebras of Lie algebras are defined in this context. An extension to the coloured graded Yang-Baxter equation and coloured Hopf superalgebras is also presented. The coloured two-parameter quantum universal enveloping algebra of gl(1/...
متن کاملar X iv : q - a lg / 9 60 50 08 v 1 5 M ay 1 99 6 QUANTUM PRINCIPAL BUNDLES & THEIR CHARACTERISTIC CLASSES
A general theory of characteristic classes of quantum principal bundles is sketched, incorporating basic ideas of classical Weil theory into the conceptual framework of non-commutative differential geometry. A purely cohomological interpretation of the Weil homomorphism is given, together with a geometrical interpretation via quantum invariant polynomials. A natural spectral sequence is describ...
متن کاملar X iv : m at h - ph / 9 90 80 07 v 1 6 A ug 1 99 9 Associated quantum vector bundles and symplectic structure on a quantum plane ∗
We define a quantum generalization of the algebra of functions over an associated vector bundle of a principal bundle. Here the role of a quantum principal bundle is played by a Hopf-Galois extension. Smash products of an algebra times a Hopf algebra H are particular instances of these extensions, and in these cases we are able to define a differential calculus over their associated vector bund...
متن کامل